Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract. The Peterson variety is a subvariety of the flag manifold G/B equipped with an action of a one-dimensional torus, and a torus invariant paving by affine cells, called Peterson cells. We prove that the equivariant pull-backs of Schubert classes indexed by arbitrary Coxeter elements are dual (up to an intersection multiplicity) to the fundamental classes of Peterson cell closures. Dividing these classes by the intersec- tion multiplicities yields a Z-basis for the equivariant cohomology of the Peterson variety. We prove several properties of this basis, including a Graham positivity property for its structure constants, and stability with respect to inclusion in a larger Peterson variety. We also find for- mulae for intersection multiplicities with Peterson classes. This explains geometrically, in arbitrary Lie type, recent positivity statements proved in type A by Goldin and Gorbutt.more » « less
- 
            We introduce generalized Demazure operators for the equivariant oriented cohomology of the flag variety, which have specializations to various Demazure operators and Demazure–Lusztig operators in both equivariant cohomology and equivariant K-theory. In the context of the geometric basis of the equivariant oriented cohomology given by certain Bott–Samelson classes, we use these operators to obtain formulas for the structure constants arising in different bases. Specializing to divided difference operators and Demazure operators in singular cohomology and K-theory, we recover the formulas for structure constants of Schubert classes obtained in Goldin and Knutson (Pure Appl Math Q 17(4):1345–1385, 2021). Two specific specializations result in formulas for the the structure constants for cohomological and K-theoretic stable bases as well; as a corollary we reproduce a formula for the structure constants of the Segre–Schwartz–MacPherson basis previously obtained by Su (Math Zeitschrift 298:193–213, 2021). Our methods involve the study of the formal affine Demazure algebra, providing a purely algebraic proof of these results.more » « less
- 
            Tu, Loring W (Ed.)We aim in this manuscript to describe a specific notion of geomet- ric positivity that manifests in cohomology rings associated to the flag variety G/B and, in some cases, to subvarieties of G/B. We offer an exposition on the the well-known geometric basis of the homology of G/B provided by Schubert varieties, whose dual basis in cohomology has nonnegative structure constants. In recent work [R. Goldin, L. Mihalcea, and R. Singh, Positivity of Peterson Schubert Calculus, arXiv2106.10372] we showed that the equivariant cohomology of Peterson varieties satisfies a positivity phenomenon similar to that for Schubert calculus for G/B. Here we explain how this positivity extends to this particular nilpotent Hessenberg variety, and offer some open questions about the ingredients for extending positivity results to other Hessenberg varieties.more » « less
- 
            Karshon, Yael; Melrose, Richard; Uhlmann, Gunther; Uribe, Alejandro (Ed.)Hessenberg varieties H(X,H) form a class of subvarieties of the flag variety G/B, parameterized by an operator X and certain subspaces H of the Lie algebra of G. We identify several families of Hessenberg varieties in type A_{n−1} that are T -stable subvarieties of G/B, as well as families that are invariant under a subtorus K of T. In particular, these varieties are candidates for the use of equivariant methods to study their geometry. Indeed, we are able to show that some of these varieties are unions of Schubert varieties, while others cannot be such unions. Among the T-stable Hessenberg varieties, we identify several that are GKM spaces, meaning T acts with isolated fixed points and a finite number of one-dimensional orbits, though we also show that not all Hessenberg varieties with torus actions and finitely many fixed points are GKM. We conclude with a series of open questions about Hessenberg varieties, both in type A_{n−1} and in general Lie type.more » « less
- 
            Gaetz, Christian (Ed.)
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available